

INDIAN SCHOOL AL WADI AL KABIR FIRST REHEARSAL EXAMINATION(2023-24) Sub: MATHEMATICS- BASIC(241)

Class: X Max Marks: 80 Date:05/12/2023 Time: 3 hours

	Section A consists of 20 questions of 1 mark each.				
Q.1.	(D) 3, 420	Q.2.	(C) 10		
Q.3.	(B) $x^2 - x - 12$	Q.4.	(C) no real roots		
Q.5.	(D) 7.5 cm	Q.6.	(A) 12 units		
Q.7.	(D) -9	Q.8.	(B) 15		
Q.9.	(A) 60°	Q.10	(C) 60°		
Q.11	$(\mathbf{D})2\sqrt{3}cm$	Q.12	(B) Step 1		
Q.13	(B) 16:9	Q.14	(A)360 cm ²		
Q.15	(B) 1/2	Q.16	(A)100°		
Q.17	(B) $\frac{22}{46}$	Q.18	(C)q		
Q.19	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	Q.20	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).		
	SECTION B				
Q.21	Tangent is perpendicular to radius at point of contact So, ∠ABO = ∠ACO = 90°	t.	½ m		
	In a quadrilateral, the sum of the angles is 360° . $\angle BAC + \angle BOC + \angle ABO + \angle ACO \approx 360^{\circ}$		½ m		
	$\therefore \angle BAC + \angle BOC = 180^{\circ}$ $\angle BOC = 180^{\circ} - 40^{\circ}$ $\angle BOC = 140^{\circ}$		½ m		
	$\angle BOC + X + X = 180$ 2x=40, x=20, $\angle OBC = 20$		½ m		

0.22	2x - y = 3,(I)				
Q.22	$\begin{vmatrix} 2x - y - 5, \\ 4x - y = 5 \end{vmatrix}$				
	4 X - Y = 3 4X - 5 = Y	½ m			
		72 111			
	Sub in (I)	½ m			
	2X -(4X-5) =3				
	2X-4X+5=3				
	-2X=3-5	1/			
	X=1	½ m			
	Sub in (I)				
	2-Y=3				
	Y=-1	½ m			
Q.23	$\angle BED = \angle ACB = 90^{\circ}$)			
	$\therefore \angle B + \angle C = 180^{\circ}$				
	∴ BD AC		½ m		
	(EDD - (CAD (Altermate an alea)		½ m		
	Therefore, by AA similarity theorem, we get				
	Δ BED ~ Δ ACB				
	$\Rightarrow \frac{BE}{AC} = \frac{DE}{BC}$		½ m		
	$\rightarrow AC - BC$				
	$\Rightarrow \frac{BE}{DE} = \frac{AC}{BC}$				
	DE BC		½ m		
	OR				
	In ΔABC				
	DE AC				
	Line drawn parallel to one side of triangle, insects the other two sides. It				
	divides the other side in sa	divides the other side in same ratio.			
	BE BD			1 m	
	$\frac{BE}{EC} = \frac{BD}{DA}$ (i)				
	Ιn ΔΑΕΒ				
	DF AE				
	Line drawn parallel to one	side of triangle, intersects the other s	ides. It divides		
	the other sides in same rat	io.		½ m	
1	DE DE			1 /2	I

 $\frac{BF}{FE} = \frac{BD}{DA}$ (ii)
From (i) & (ii) $\frac{BE}{EC} = \frac{BF}{FE}$

 $\cdot\cdot$ Hence proved.

½ m

		½ m	
		½ m	
	$\frac{2(\frac{1}{2})^{2} + 3(\frac{2}{\sqrt{3}})^{2} - 2(1)^{2}}{(\frac{1}{2})^{2} + (\frac{1}{\sqrt{2}})^{2}} = \frac{2(\frac{1}{4}) + 3(\frac{4}{3}) - 2}{\frac{1}{4} + \frac{1}{2}} = \frac{10}{\frac{1}{4}}$	/2111	
	$\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{4} + \frac{1}{2} = \frac{10}{3}$	½ m	
	OR	72.11	
	$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} - \sec \theta \csc \theta = .$		
	$\frac{\tan^2\theta}{\tan\theta-1} - \frac{\cot\theta}{\tan\theta-1} - \sec\theta \csc\theta$ $\frac{\sin^2\theta}{\cos\theta(\sin\theta-\cos\theta)} - \frac{\cos^2\theta}{\sin\theta(\cos\theta-\sin\theta)} - \frac{1}{\sin\theta\cos\theta}$ ½ m		
	$\frac{\sin^{3}\theta - \cos^{3}\theta}{\sin\theta\cos\theta(\sin\theta - \cos\theta)} - \frac{1}{\sin\theta\cos\theta}$ $\frac{1 - 2\sin\theta\cos\theta + 3\sin\theta\cos\theta}{\sin\theta\cos\theta} - \frac{1}{\sin\theta\cos\theta}$ $\Rightarrow 1$ 1 m		
Q.30			Fig: ½ m
	To prove: $AP =$ Construction Join OP , Proof: $\triangle OAP$ and $\triangle OA$ $OA = OB \text{ (Ra}$ $OP = OP$ $\angle OAP = \angle OBP =$	AO and BO. BP dius of circle) (Common side)	½ m 1 m ½ m
	(Radius \perp :: $\Delta OAP \cong \Delta OBP$ (RHS co :: $AP = BP$	ngruency rule) (cpct) ence proved.	1/2 m
Q.31	1 2 3 4 5 6	1 m	
	1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)		
	2 (2.1) (2.2) (2.3) (2.4) (2.5) (2.6)		
	3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)		
	4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)	1 m	
	5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)	½ m	
	6 (6.1) (6.2) (6.3) (6.4) (6.5) (6.6)	½ m	
	option 1:probability=5/36 option 2: probability=2/36 Chance of winning is more in option 1.		

SECTION D

Q.32

For upstream,

Speed = (18 - x) km/hr

Distance = 24 km

 $Time = t_1$

Therefore,

$$t_1 = \frac{24}{18 - x}$$

For downstream,

Speed = (18 + x) km/hr

Distance = 24 km

 $Time = t_2$

Therefore,

 $\mathsf{t_1} = \mathsf{t_2} + \mathsf{1}$

½ m

½ m

1 m

 $\frac{24}{18 - x} = \frac{24}{18 + x} + 1$

 $\Rightarrow \frac{1}{18 - x} - \frac{1}{18 + x} = \frac{1}{24}$

 $\Rightarrow \frac{(18+x)-(18-x)}{(18-x)(18+x)} = \frac{1}{24}$

 $\Rightarrow 48x = (18 - x)(18 + x)$

 \Rightarrow 48x = 324 + 18x - 18x - x²

 \Rightarrow x² + 48x - 324 = 0

 $\Rightarrow x^2 + 54x - 6x - 324 = 0$

 $\Rightarrow x(x+54) - 6(x+54) = 0$

 $\Rightarrow (x + 54)(x - 6) = 0$

 \Rightarrow x = -54 or x = 6

 $\Rightarrow x \neq -54$

.. x = 6

½ m

½ m

1½ m

½ m

Thus the speed of stream is 6 km/hr

OR

Hence the correct answer is 6 km/hr.

$$\frac{1}{(x-2)} + \frac{2}{(x-1)} = \frac{6}{x}$$

$$= \frac{x-1+2x-4}{(x-2)(x-1)} = \frac{6}{x}$$

$$= x(3x-5) = 6(x-2)(x-1)$$

$$= 3x^2 - 5x = 6(x^2 - x - 2x + 2)$$

$$= 3x^2 - 5x = 6x^2 - 18x + 12$$

$$= 13x - 3x^2 - 12 = 0$$

$$=3x^2 - 13x + 12 = 0$$

$$=3x^2-4x-9x+12=0$$

$$= x(3x - 4) - 3(3x - 4) = 0$$

$$(3x - 4)(x - 3)$$

so,
$$x=3$$
 or $x = \frac{4}{3}$

1 m

½ m

½ m

1 m

1 ½ m

½ m

Q.33	In ΔAEP and ΔCDP		Civer		
	∠AEP = ∠CDP = 90º	In ΔABD and ΔCBE	Given, To prove figure Reasons		
	[∵ CE ⊥ AB and AD ⊥ BC; altitudes]	∠ADB = ∠CEB = 90º			
	∠APE = ∠CPD (Vertically opposite angles)	∠ABD = ∠CBE (Common angle)			
	⇒ ΔAEP ~ ΔCPD (AA criterion)	⇒ ΔABD ~ ΔCBE (AA criterion)			
	In ∆AEP and ∆ADB		2 m		
	∠AEP = ∠ADB = 90º		Each proving 1m		
	$\angle PAE = \angle BAD$ (Common angle)				
	⇒ ΔAEP ~ ΔADB (AA criterion)				
Q.34	Total height of the tent above the ground = $27 \mathrm{m}$ Height of the cylinderical part, h_1 = $6 \mathrm{m}$ Height of the conical part, h_2 = $21 \mathrm{m}$				
	Diameter = 56 m			½ m	
	Radius = 28 m				
	Curved surface area of the cylinder, $CSA_1 = 2\pi r h_1 = 2\pi \times 28 \times 6 = 336\pi$ 1½ n Curved surface area of the cylinder, CSA_2 will be $\pi r l = \pi r \sqrt{h^2 + r^2} = \pi \times 28 \times \sqrt{21^2 + 28^2} = 28\pi \sqrt{441 + 784} = 28\pi \times 35 = 980\pi$ 1½ n Total curved surface area = CSA of cylinder + CSA of cone				
	= CSA ₁ + CSA ₂			½ m	
	$= 336\pi + 980\pi = 1316\pi = 4136 \text{ m}^2$			1 m	
	Thus, the area of the canvas used in making the tent is 4136 m ² .				
	OR Let r cm be the radius and h cm the height of the cylinder. Then, $r=\frac{7}{2}cm; h=(19-2\times\frac{7}{2})cm=12cm$				
	Also radius of hemisphere = $\frac{7}{2}$ cm = rcm	Also radius of hemisphere = $\frac{7}{2}$ cm = rcm			
	Now, volume of the solid = volume of the cylinder	+ volume of two hemisphere	1/2	m	
	$\{\pi r^2 h + 2\left(\frac{2}{3}\pi r^3\right)\} \text{ cm}^3 = \pi r^2 \left(h + \frac{4r}{3}\right) \text{ cm}^3$				

Surface area of the solid =curved surface are of cylinder + surface area of two hemisphere ½ m $= (2\pi rh + 2 \times 2\pi r^2) cm^2$ $= 2\pi r (h + 2r) cm^2$ $=2\times\frac{22}{7}\times\frac{7}{2}(12+2\times\frac{22}{7}\times\frac{7}{2})\,cm^2$ 1½ m = $(2 \times \frac{22}{7} \times \frac{7}{2} \times 19) \text{ cm}^2 = 418 \text{cm}^2$ Q.35 Life Number хi di=xi-a ui=di/h fiui Mean= of bulbs time $a + \frac{\Sigma fiui}{\Sigma fi}$ a=65 (fi) (in hours) =6540-50 4 45 -20 -2 -8 +15/406 55 -10 -1 50-60 -6 =65+0.37560-70 13 0 0 0 =65.37565 10 75 10 70-80 1 10 20 80-90 2 85 4 90-100 5 95 30 3 15

Table : 3 m Calculations :2 m

Total

Q.36 i) second term = 6200 d=200 (-----1 m)

40

ii)

Takes a = 6000, d = 200 and n = 25 to find the amount as 6000 + (25 - 1)200 = Rs 10800.

----- (1 m)

(iii) {(A)

 $S_{50} = 50/2 [2(4000) + (50 - 1)(400)]$

Solves the above expression to find the total amount as Rs 6,90,000.

½ m 1½ m

15

Or

	R			
	iii) Frames equation as follows:	1 m		
	6000 + (n - 1)200 = 4000 + (n - 1)400			
	Solves the above equation to find the value of n as 11.			
	Writes that, since they both earn the same amount for the 11th painting, as Bhima's increment is more,			
	Bhima gets more money than Manan for the 12th painting.			
Q.37	i) A(-2,2) B(-1, 2)(1 m)			
	ii) A			
	B(1,2), F(-2,9) ½ m			
	$BF^2 = (-2-1)^2 + (9-2)^2$			
	$= (-3)^2 + (7)^2$ $= 9 + 49$			
	= 9 + 49 = 58			
	So, BF = $\sqrt{58}$ units			
	50, B1 450 tillis			
	OR ii)B)			
	A(-2,2), F(-2,9), G(-4,7), H(-4,4) Clearly GH = 7-4=3units AF = 9-2=7 units So, height of the trapezium AFGH = 2 units So, area of AFGH = $\frac{1}{2}$ (AF + GH) x height = $\frac{1}{2}$ (7+3) x 2			
	= 10 sq. units 1½ m 1½ m 1ii) Z (-4,2) ratio(1 m)			
Q.38				
	XY			
	30			
	100m			
	P 45. Q			
	(I) XY PQ and AP is transversal.			
	$\angle APD = \angle PAX$ (alternative interior angles) 1 m			
	∠APD = 30°			
	(II) ∠YAQ = 30°			
	∠AQD = 30° ½ m			
	Because XY PQ and AQ is a transversal			
	so alternate interior angles are equal			
	∠YAQ=∠AQD ½ m			

(III) In ∆ ADP

$$\tan 45^\circ = \frac{100}{PD}$$

$$1 = \frac{100}{PD}$$

1 m

1 m

Boat P is 100 m from the light house

OR

 $\ln \Delta ADQ$

$$\tan 30^0 = \frac{100}{DQ}$$

$$\frac{1}{\sqrt{3}} = \frac{100}{00}$$

$$DQ = 100\sqrt{3} \text{ m}$$

Boat Q is 100√3 m from the light house.

1 m

1 m